sd4 - exercices Algorithmes sur les graphes

Partie 1

Algorithmes sur les Graphes

1.1 Exercice 1 : Echauffement - Maximum dans un dictionnaire

Objectif : Se familiariser avec la manipulation des dictionnaires avant de travailler sur les graphes.

Soit un dictionnaire dont les clés sont des entiers et les valeurs sont des chaines de caractéres.

1 notes = {15: "Alice", 12: "Bob", 18: "Charlie", 14: "Diana"}

Question : Compléter la fonction max_cle(dico) quiretourne la clé maximale du dictionnaire.

1 def max _cle(dico):

2 """Retourne la clé maximale du dictionnaire"""
3 maximum = None

4 for cle in dico:

5 if maximum is Nome or ... : # A compléter
6 maximum = ... # A compléter

7 return maximum

Exemple d’utilisation :

1 >>> max_cle(notes)
2 18

1.2 Exercice 2 : Représentation d’un graphe

On représente un graphe orienté par un dictionnaire d’adjacence ou : - Chaque clé est un sommet (chaine de
caractéres) - Chaque valeur est la liste des sommets adjacents (successeurs)

Exemple :

1 graphel = {

) 'A‘I [lBl, 'C‘],
3 'B': ['D'],

4 'c': ['D'],

5 'D': []

o F

Questions :

2.1 Dessiner le graphe correspondant a graphel.

2.2 Compléter la fonction nombre_sommets (graphe) qui retourne le nombre de sommets du graphe.

1 def nombre_sommets (graphe):
2 """Retourne le nombre de sommets du graphe"""
3 return len(...) # A compléter

2.3 Ecrire une fonction nombre_aretes (graphe) qui retourne le nombre d’arétes (arcs) du graphe.

sd4 Algorithmes sur les graphes - exercices

1.3 Exercice 3 : Degré des sommets
Pour un graphe orienté : - Le degré sortant d'un sommet est le nombre d’arcs qui partent de ce sommet - Le
degré entrant d’'un sommet est le nombre d’arcs qui arrivent a ce sommet

Questions :

3.1 Compléter la fonction degre_sortant (graphe, sommet) qui retourne le degré sortant d’'un sommet.

1 def degre_sortant(graphe, sommet):
2 """Retourne le degré sortant d'un sommet"""
3 return len(graphe[...]) # A compléter

3.2 Ecrire une fonction degre_entrant (graphe, sommet) qui retourne le degré entrant d’'un sommet.

3.3 Ecrire une fonction sommet_isole(graphe) qui retourne la liste des sommets isolés (degré entrant et
sortant égaux a 0).

Exemple avec graphel :

1 >>> degre_sortant (graphel, 'A')

2 2
5 >>> degre_entrant (graphel, 'D')
s 2

1.4 Exercice 4 : Parcours en largeur (BFS)

Le parcours en largeur explore le graphe niveau par niveau a partir d’'un sommet de départ.

Question : Compléter la fonction parcours_largeur(graphe, depart) quiretourne la liste des sommets
visités dans I'ordre du parcours en largeur.

1 def parcours_largeur (graphe, depart):

2 """Parcours en largeur a partir du sommet depart"""
3 visites = []
. a_visiter = [depart] # File d'attente
5
6 while len(a_visiter) > O0:
7 sommet = a_visiter.pop(0) # Retirer le premier élément (file
FIFO)
8
9 if sommet not in visites:
1 visites.append(...) # A compléter
11
12 # Ajouter les voisins non visités a la file
1 for voisin in graphe[sommet]:
14 if voisin not in visites and voisin not in a_visiter:
15 a_visiter.append(...) # A compléter
16
17 return visites
Exemple :
1 graphe2 = {

page - 2

sd4 Algorithmes sur les graphes - exercices

2 "A': ['B', 'C'],

3 'B': ['D', 'E'],

4 'c': ['F'],

5 'D': [],

6 'E': ['F'],

7 'F': []

s}

9

w >>> parcours_largeur (graphe2, 'A')
« ['A', 'B', 'C', 'D', 'E', 'F']

Question supplémentaire : Que retourne parcours_largeur (graphe2, 'B') ? Déterminez le résultat a
la main avant de tester.

1.5 Exercice 5 : Parcours en profondeur (DFS)

Le parcours en profondeur explore le graphe en allant le plus loin possible dans chaque branche avant de
revenir en arriere.

Question 5.1 : Ecrire une fonction parcours_profondeur (graphe, depart) quiretourne la liste des som-
mets visités dans 'ordre du parcours en profondeur.

Algorithme : 1. Utiliser une pile (avec une liste Python) 2. Marquer les sommets visités 3. Pour chaque sommet,
explorer en profondeur avant de passer au suivant

Remarque : On peut aussi implémenter une version récursive.

Question 5.2 : Que retourne parcours_profondeur (graphe2, 'A') ? Déterminez le résultat a la main
avant de tester votre fonction.

Rappel : graphe? est le graphe défini dans I’exercice 4.

1.6 Exercice 6 : Détection de chemin

Question : Compléter la fonction existe_chemin(graphe, depart, arrivee) qui retourne True s’il
existe un chemin entre le sommet depart et le sommet arrivee, et False sinon.

1 def existe_chemin(graphe, depart, arrivee):

2 """Retourne True s'il existe un chemin de depart vers arrivee"""
3 visites = parcours_largeur(graphe, ...) # A compléter
4 return ... in visites # A compléter
Exemple :
1 >>> existe_chemin(graphe2, 'A', 'F')
: True
3 >>> existe_chemin(graphe2, 'D', 'A')
+ False

page - 3

sd4 Algorithmes sur les graphes - exercices

1.7 Exercice 7 : Plus court chemin (BFS)

Dans un graphe non pondéré, le parcours en largeur permet de trouver le plus court chemin (en nombre
d’arétes).

Question : Compléter la fonction plus_court_chemin(graphe, depart, arrivee) quiretourne la liste
des sommets formant le plus court chemin entre depart et arrivee. Si aucun chemin n’existe, retourner
None.

1 def plus_court_chemin(graphe, depart, arrivee):

2 """Retourne le plus court chemin entre depart et arrivee"""
3 if depart == arrivee:

" return [depart]

5

6 predecesseurs = {depart: None} # Dictionnaire des prédécesseurs
7 a_visiter = [depart]

8

9 while len(a_visiter) > O0:
10 sommet = a_visiter.pop (0)
11
12 for voisin in graphe[sommet]:
13 if voisin not in predecesseurs:
" predecesseurs[voisin] = ... # A compléter
15 a_visiter.append(voisin)
16
17 # Si on a atteint 1l'arrivée, reconstruire le chemin
18 if voisin == arrivee:
1 chemin = []
20 s = arrivee
21 while s is not None:
22 chemin.insert (0, s) # Insérer au début
2 s = predecesseurs[...] # A compléter
24 return chemin
25
2 return None # Aucun chemin trouvé

Exemple :
1 >>> plus_court_chemin(graphe2, 'A', 'F')
:» ['A', 'C', '"F']

1.8 Exercice 8 : Détection de cycle

Un graphe orienté contient un cycle s’il existe un chemin d’un sommet vers lui-méme.

Question : Compléter la fonction contient_cycle(graphe) qui retourne True si le graphe contient au
moins un cycle, False sinon.

1 def contient_cycle(graphe):

2 """Retourne True si le graphe contient un cycle"""
3 NON_VISITE = O
4 EN_COURS = 1

page - 4

sd4

Algorithmes sur les graphes - exercices

TERM

etat

def

20
21
22
23 for
24
25
26
27

28

INE 2

= {sommet: NON_VISITE for sommet in graphe}

visite_profondeur (sommet) :
etat [sommet] # A compléter (marquer comme en cours)

for voisin in graphe[sommet]:

if etat[voisin] == EN_COURS:
return True # Cycle détecté !
elif etat[voisin] == NON_VISITE:

if visite_profondeur(voisin):
return # A compléter

etat [sommet] TERMINE

return False

Tester tous les sommets (pour graphes non connexes)

sommet in graphe:
if etat[sommet] == NON_VISITE:
if visite_profondeur (sommet) :
return True

return False

Testez votre fonction sur :

1 graphe_cycle = {

2 'A': ['B'],

3 'B': ['C'],

i 'C': ['A'] # Cycle A -> B -> C -> A
s}

6

7 graphe_sans_cycle = {

8 'A': ['B'],

9 'B': ['C'],

10 G []

1.9 Exercice 9 : Graphe fortement connexe

Un graphe orienté est fortement connexe si pour toute paire de sommets (u, v), il existe un chemin de u vers

v ET un chemin de v vers u.

Question : Ecrire une fonction est_fortement_connexe (graphe) qui retourne True si le graphe est for-
tement connexe.

Indication : Une approche simple consiste a vérifier, pour chaque paire de sommets, qu’il existe un chemin

dans les deux

sens (mais cela peut étre optimisé).

page - 5

sd4 Algorithmes sur les graphes - exercices

1.10 Exercice 10 : Tri topologique

Un tri topologique d’un graphe orienté acyclique (DAG) est un ordre linéaire des sommets tel que pour chaque
arc (u, v), u apparait avant v dans l’ordre.

Questions :

10.1 Ecrire une fonction tri_topologique (graphe) qui retourne une liste représentant un tri topologique
du graphe. Si le graphe contient un cycle, retourner None.

10.2 Tester votre fonction sur le graphe suivant représentant des dépendances entre taches :

1 taches = {

2 "A': ['C'],

: 'B': ['C', 'D'],
4 'c': ['E'],

; 'D': ['E'],

6 'E': []

7}

Algorithme de Kahn :

1. Calculer le degré entrant de chaque sommet
2. Mettre dans une file tous les sommets de degré entrant 0

3. Tant que la file n’est pas vide :

« Retirer un sommet et 'ajouter au résultat
« Diminuer le degré entrant de ses voisins

« Ajouter a la file les voisins dont le degré entrant devient 0

4. Sitous les sommets ont été traités, retourner le résultat, sinon il y a un cycle

page - 6

